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Abstract 

Background  Lymphoma is a malignant tumor of the immune system and its incidence is increasing year 
after year, causing a major threat to people’s health. Conventional diagnosis of lymphoma basically depends 
on histological images consuming long-time and tedious manipulations (e.g., 7–15 days) and large-field view 
(e.g., > 1000 × 1000 μm2). Artificial intelligence has recently revolutionized cancer diagnosis by training pathological 
image databases via deep learning. Current approaches, however, remain dependent on analyzing wide-field patho-
logical images to detect distinct nuclear, cytologic, and histomorphologic traits for diagnostic categorization, limiting 
their applicability to minimally invasive lesion.

Results  Herein, we develop a molecular imaging strategy for minimally invasive lymphoma diagnosis. By spreading 
lymphoma tissue sections tightly on a surface-enhanced Raman scattering (SERS) chip, label-free images of DNA dou-
ble strand breaks (DSBs) in 30 × 30 μm2 tissue sections could be achieved in ~ 15 min. To establish a proof of concept, 
the Raman image datasets collected from clinical samples of normal lymphatic tissues and non-Hodgkin’s lymphoma 
(NHL) tissues were well organized and trained in a deep convolutional neural network model, finally achieving a rec-
ognition rate of ~ 91.7 ± 2.1%.

Conclusions  The molecular imaging strategy for minimally invasive lymphoma diagnosis that can achieve a recogni-
tion rate of ~ 91.7 ± 2.1%. We anticipate that these results will catalyze the development of a series of histological SERS-
AI technologies for diagnosing various diseases, including other types of cancer. In this work, we present a reliable 
tool to facilitate clinicians in the diagnosis of lymphoma.
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Graphical Abstract

hematoxylin–eosin (H&E) staining in a label-free man-
ner, followed by the convolutional neural network (CNN) 
training and testing [29, 30]. However, these SRS-based 
methods still adhere to the histopathological interpreta-
tion principle to identify histomorphologic, cytologic 
and nuclear features. The features should be extracted 
from slide images with a large image scale, restricting the 
applications to minimally invasive lesions. Distinguished 
from SRS, which reveals the spectroscopic information of 
C-H bonds, SERS inherits the rich chemical fingerprint 
spectroscopic information and amplifies Raman signals 
by several orders of magnitude by plasmon-enhanced 
scattering and excitation [31–41].

Making use of unique merits of AI and SERS, we 
herein present an AI-assisted SERS (AI-SERS) strategy 
for the minimally invasive diagnosis of clinic lymphoma 
sample in a swift and label-free manner. Of particular 
significance, a SERS mapping image of lymphoma tis-
sues with an area of 30 × 30 μm2 can be achieved within 
15  min through attaching the lymphoma slice sample 
onto the surface of a SERS chip, the silicon wafer func-
tionalized with silver nanoparticles (Ag NPs@Si) via 
surface modification (Fig.  1a). In our case, we collected 

Introduction
Currently, the clinical technique for the diagnosis and 
classification of lymphoma is ultrasound-guided core 
needle biopsy (UGCNB) assisted with histopathologi-
cal analysis [1–5]. UGCNB can accurately and mini-
mally obtain lesion tissues, improving the sampling rate 
and thus avoiding misdiagnosis caused by unqualified 
sampling. It is worth pointing out that, the subsequent 
histopathological analysis has relatively complicated 
experimental procedures, including frozen sectioning 
and cytological preparations, consuming a long diagnosis 
circle (e.g., 7–15 days) [6–9]. Moreover, the identification 
of microscopic architectural features requires a large-
field view (e.g., > 1000 × 1000 μm2) of histological images. 
In addition, the pathological results should be inter-
preted by skilled technicians or clinicians, which places 
great burdens on developing countries, wherein medical 
human resources are relatively scarce [10].

On the other hand, artificial intelligence (AI) has 
recently revolutionized cancer diagnosis by training the 
database of pathological images through neural net-
works [11–28]. Recently, the stimulated Raman scat-
tering (SRS) technique has been employed to simulate 
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900 two-dimensional SERS mapping points from clini-
cal samples, including normal lymphoma and non-
Hodgkin’s lymphoma (NHL) from healthy donors as 
well as lymphoma patients (Fig.  1b). After training in 
the CNN model, the resultant SERS images of nor-
mal lymphoma and non-Hodgkin’s lymphoma can be 

precisely distinguished with an accuracy rate as high 
as ~ 91.7 ± 2.1%.

Fig. 1  Schematic illustration of SERS imaging of clinical lymphatic sections for the diagnosis of lymphoma assisted by a silicon-based SERS 
chip coupled with deep learning. a Overview. When the lymphoma slice sample received from ultrasound-guided core needle biopsy (UGCNB) 
is attached to the surface of the SERS chip, two-dimensional SERS scanning of lymphoma tissue with an area of 30 × 30 μm2 can be completed 
in less than 15 min. SERS signals (40 × 40 points) were detected from per sample and analysed by a convolutional neural network (CNN). The system 
outputs predict the presence of lymphoma. The heat map displays representative examples of predicted outcomes for lymphoma status. b The 
process of the CNN framework. The CNN model includes a convolutional layer, a max-pooling layer, a dropout layer and a fully connected layer. In 
the first step, the two-dimensional SERS imaging was input to the CNN model to optimise the performance of the CNN. Subsequently, the type 
of lymphoma samples was performed to identify
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Materials and methods
Preparation of silicon SERS chip
Hydrofluoric acid-assisted galvanic deposition was used 
to create silicon SERS substrates made of Ag  NPs that 
had been uniformly modified on a silicon wafer. To fab-
ricate silver nanoparticle-decorated silicon substrates 
(Ag NPs@Si) for SERS applications, a rectangular sili-
con specimen (4.0  cm × 4.0  cm) underwent sequential 
chemical treatments. Initially, the native silicon dioxide 
layer was etched through immersion in 5% hydrofluo-
ric acid solution for 30  min. Subsequent metallization 
was achieved by exposing the activated silicon surface 
to an aqueous mixture containing 1.25 mM silver nitrate 
in 10% HF, facilitating spontaneous silver nanoparti-
cle deposition through galvanic displacement. The syn-
thesized hybrid material underwent post-processing to 
enhance stability, including triple-rinsing with deionized 
water to eliminate residual reactants and prevent surface 
oxidation, followed by dehydration using a gentle nitro-
gen stream. This optimized protocol ensures reproduc-
ible formation of oxidation-resistant Ag NPs@Si surfaces 
suitable for spectroscopic applications.

Clinical tissue samples obtained by UGCNB
Clinical tissue samples (Table  S1) without any identi-
fying information were collected at the First Affiliated 
Hospital of Soochow University (Suzhou, China) with 
informed consent. The Ethics Committee of First Affili-
ated Hospital of Soochow University approved this study 
(Audit Number: (2023) LUN Research Batch No. 314 
approvals for healthy control and NHL, respectively). 
In detail, the patient showed a proper position (supine 
or lateral position) to fully expose the correspond-
ing lesions of the lymph node (e.g., neck, axilla, etc.). 
The ultrasonic diagnostic equipment of GE LOGIQ E9 
(2–9  MHz, 9–15  MHz) and MyLabTwice (3–11  MHz, 
4–13  MHz) equipped with ARGON biopsy needles 
(SuperCore Biopsy Instrument, MCXS1609LX) were 
employed to determine the locations of lesions and mini-
mally obtain the corresponding tissue samples. Typically, 
the ML6-15 or LA523 linear array probe was employed 
to perform two-dimensional multi-section ultrasound 
scanning to determine the location and size of the lymph 
node, internal echo, blood flow, and adjacent relationship 
with surrounding tissues. Afterwards, 1.0 or 2.4  mL of 
contrast agent was diluted with 5 ml of saline, and then 
5  ml of saline was injected through the median cubital 
vein in sequence. Meanwhile, the 9 L or LA332 probe 
was employed to perform ultrasound imaging. Dur-
ing ultrasound imaging, the perfusion of lymph nodes 
and surrounding tissues was monitored in real time 
to mark the puncture points on the body surface and 
design the optimal puncture path, avoiding the regions 

without enhancement and surrounding large blood ves-
sels, nerves and important organs. The skin, probes, and 
drapes were routinely sterilized, and 2% lidocaine was 
used for local infiltration anaesthesia. During the punc-
ture process, ultrasound imaging was used to monitor 
and adjust the needle direction in real time. After con-
firming the best puncture path, the trigger of the biopsy 
needle was pressed to obtain a tissue strip. According 
to the clinical requirements, tissue strips could be taken 
multiple times by repeating the above operation proce-
dures. The obtained tissue strips were immediately fixed 
in a 10% formalin solution or placed at −80  °C for the 
following experiments. During the surgical process, the 
vital signs of patients should be carefully evaluated. After 
the surgery, the patient can leave or return to the ward 
without discomfort. This study employed retrospectively 
obtained samples as this study aims to create a technol-
ogy that might be used by clinicians to identify normal 
and lymphoma patients, the time period for enrollment 
and data collection was not identified.

SERS imaging
Two-dimensional SERS imaging was performed by inte-
grating the area of the peak with the Raman shift at 
1588 cm−1. In addition, to investigate the assignments of 
the Raman shift at 1588  cm−1, DNA samples were irra-
diated with UV or treated with hydrogen peroxide, fol-
lowed by SERS measurements. In the UV induction 
experiment, the genomic DNA of RPMI cells was first 
extracted with the kit, and then the extracted DNA sam-
ples were irradiated with a UV lamp for 0, 0.5, and 2 h. 
Finally, the samples were tested with a confocal Raman 
spectrometer. In the hydrogen peroxide induction exper-
iment, the RPMI cells were first cultured in a medium 
containing 0, 0.1, and 1 mM hydrogen peroxide for 6 h, 
and then the genomic DNA of each group of cells was 
extracted using the kit. Finally, the extracted genomic 
DNA samples were tested using a confocal Raman spec-
trometer. Raman spectra were obtained using a WITec 
alpha300 R equipped with a Ne-He laser (532  nm, 0.8 
mW) and a Zeiss EC Epiplan 50x. Each sample of the 
section attached to Ag NPs@Si was independently 
scanned at 20 different positions, with the scanning area 
of 30  μm × 30  μm. The detailed parameters for Raman 
measurements were as follows: excitation wavelength of 
532 nm, the laser power of 0.8 mW, integration time of 
0.5 s, scanning step of 40 × 40, and collection interval of 
0–3600  cm−1. The obtained Raman spectra and Raman 
mapping were further analysed and exported by WITec 
Project FIVE 5.1 software.
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The architecture of the CNN and training
The architecture of CNN includes four layers: a convolu-
tional layer (filters = 4, kernel size of 6 × 6), a max pool-
ing layer (pool size of 2 × 2), a dropout layer (dropout 
rate = 0.2) and a fully connected layer. The original molec-
ular images were transferred by four convolution kernels 
in the convolutional layer, followed by size reduction in 

the max pooling layer and pixel dropping in the dropout 
layer. The nonlinear activation functions of ReLU and 
softmax were subsequently employed to fit the data with 
outputs in the fully connected layer. The workflow pri-
oritizes identifying lymphoma samples through predic-
tion, then directly categorizes them into normal or NHL 
lymphoma types. For CNN model development, the 

Fig. 2  Collection of clinical lymphatic sections by ultrasound-guided core needle biopsy (UGCNB) followed by SERS measurements 
via a silicon-based SERS chip. a A scheme illustrating the collection of lymphatic sections by UGCNB followed by SERS measurements 
via a silicon-based SERS chip. b Precise collection of lymphatic tissues by UGCNB and corresponding. c Surgical operations. LN lymph node, 
CCA​ common carotid artery, IJV internal jugular vein, CN thick needle. b-(1) An abnormal lymph node is observed in the IV area of the right 
cervical close to the common carotid artery and internal jugular vein (the size is approximately 18 mm × 8 mm), wherein the lymphatic hilum 
echo disappears. b-(4,5) The abnormal lymph node is uniformly enhanced; no necrosis is observed. b-(2) Use an anaesthetic needle to inject 
normal saline between the internal jugular vein and the lymph nodes to form a safety isolation zone. b-(3) A 16G semiautomatic biopsy needle 
is punctured into the right cervical area IV lymph node inside, triggering ejection and withdrawing the needle. Under the premise of ensuring 
safety, obtain the number of tissue strips as needed. c-(1), (2) Tissue strips taken out by the 16G semiautomatic biopsy needle. c-(3) Only punctate 
wounds remain on the patient’s neck puncture site, followed by pasting with an applicator. d SEM and AFM images of Ag NPs@Si. e SEM images 
of lymphatic sections attached to Ag NPs@Si. f Typical Raman spectra collected from lymphoma sections attached to Ag NPs@Si. g Schematic 
illustration of the exposure of -N7-H in guanine and adenine caused by DNA double-strand breaks (DSBs). h SERS mapping at 1588 cm−1 collected 
from sections on Ag NPs@Si and silicon wafer. Excitation wavelength = 532 nm, laser power = 0.8 mW, acquisition time = 1 s. All imaging experiments 
were repeated three times with similar experimental conditions and results
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molecular imaging dataset was split into a training sub-
set (810 images) and a test subset (90 images). Network 
architecture design, data preprocessing, and training pro-
cedures were executed using TensorFlow (version 2.1), an 
open-source machine learning framework developed by 
Google (Table S2).

Results and discussion
UGCNB‑guided SERS detection of lymphoma sections
The lymphoma tissue strips were initially minimally 
obtained using the UGCNB method, followed by label-
free SERS mapping (Fig.  2a). Two-dimensional ultra-
sound multislice scanning was utilized to assess the 
fundamental health of suspicious lymph nodes. As shown 
in Fig. 2b, we recorded and observed the perfusion of the 
lymph nodes and the adjacent relationship with periph-
eral blood vessels, nerves and other important structures 
in real time under the ultrasound contrast mode. After-
wards, we designed the puncture path and labelled the 
puncture point on the body. To harvest the tissue strips, 
we then performed routine preoperative preparations by 
using a disposable biopsy needle (16 G × 9 cm) for target 
lymph node puncture (Fig. 2c). Lymphatic sections with 
a thickness of 2 μm were cut and spread on Ag NPs@Si 
or glass slides. Notably, lymphoid sections attached to 
glass slides underwent routine histological manipula-
tions, including dewaxing, hydration and staining, while 
sister lymphoid sections on Ag NPs@Si underwent the 
same processing except for staining (Fig. S1). We syn-
thesized Ag NPs@Si by using the silicon-based galvanic 
deposition method, as previously reported [42–45]. The 
in situ growth of uniform silver nanoparticles on silicon 
substrates occurs through redox reactions mediated by 
surface Si–H bonds formed during HF treatment. When 
silver nitrate solution interacts with hydrofluuoric acid-
etched silicon wafers, Ag⁺ ions undergo reduction at the 
semiconductor interface, resulting in the direct formation 
of metallic silver nanostructures. Atomic force micros-
copy (AFM) and scanning electron microscopy (SEM) 

characterization confirms the homogeneous distribu-
tion of spherical Ag nanoparticles with an average size 
of 180  nm across the silicon surface. This self-limiting 
deposition process effectively stabilizes the nanoparticles 
without requiring external stabilizing agents, as the acti-
vated Si–H terminated surface simultaneously provides 
both reducing electrons and anchoring sites for metal-
lic silver nucleation (Fig.  2d). As a result, the Ag NPs@
Si featured a good SERS reproducibility. As shown in the 
SERS mapping spectra of 10–4 M R6G in Fig. S2, the rela-
tive standard deviation (RSD) value of the SERS intensity 
of R6G at 1364  cm−1 is 4.33%. In addition to adaptable 
reproducibility, the Ag NPs@Si also featured distinct 
SERS effects. As simulated by finite-difference-time-
domain (FDTD) (Fig. S3), we observed relatively strong 
electromagnetic (EM) fields around Ag NPs and in the 
gap between Ag NPs and the silicon surface in Ag NPs@
Si. The corresponding SERS enhancement factor (EF) of 
Ag NPs@Si was calculated to be 1.5 × 106 (the detailed EF 
calculation can be found in the Note S1).

To focus on examining the SERS signal source of lym-
phoma sections, we used SEM and confocal Raman 
microscopy to characterize lymphoma section sam-
ples attached to AgNPs@Si substrates. As illustration in 
Fig.  2e, the SEM image showed that the section sample 
and AgNPs were in close contact, which was critical for 
generating increased Raman signals of biological com-
ponents within plasmonic gaps. To avoid burning dam-
age during laser irradiation, we rigorously investigated 
the laser power and finally set it at 0.8 mW to obtain 
stable intrinsic Raman spectra. As revealed in Fig.  2f, 
we detected subtle Raman peak and intensity variations 
in several regions near 836, 1168, 1342 and 1558  cm−1, 
which were assigned to the H-bonding of the indole ring 
in tyrosine, the ring stretch in guanine, the N–H/C-H 
band in amide III/a-helix and N7-H in guanine/adenine, 
respectively (Table S3). In our initial attempt, we focused 
on SERS mapping the 1588  cm−1 peaks that were the 
clearest Raman peak. Previous studies have shown that 

(See figure on next page.)
Fig. 3  Detection of DNA double-strand breaks by SERS. a SERS spectra of genomic DNA extracted from RPMI cells with UV radiation or not. b 
SERS mapping of genomic DNA extracted from HUT78 cells at 1588 cm−1 with and without hydrogen peroxide (H2O2) treatment. c H&E images 
and bright-field images in Raman mode collected from diffuse large B lymphoma. Clinical paraffin-embedded diffuse large B lymphoma tissue 
was sliced into multiple parts, followed by H&E staining and SERS mapping. Three zoomed-in sections (the region of damage (red frame), 
the boundary of cell inflammation (blue frame) and nonpathological regions (green frame) selected from one sister section’s H&E images are 
colocalized in the matching bright-field images in Raman mode of another sister section. Afterwards, the three selected regions are subjected 
to SERS mapping. d The overlapping of SERS mapping of DNA DSBs at 1588 cm−1 with immunostaining of DNA DSB markers by using anti-H2A.X. 
e H&E image, CD20, CD79a immunostaining image and bright-field image in Raman mode collected from consequent sections of NK/T lymphoma 
sample. f H&E images and bright-field images in Raman mode collected from consequent sections of MALT, follicular, NK/T and peripheral T 
lymphoma. Positions of zoom-in frames in bright-field images were chosen to perform SERS mapping according to pathological features. g The 
SERS mapping of healthy control and NHL lymphoma. Excitation wavelength = 532 nm, laser power = 0.8 mW, acquisition time = 1 s. All imaging 
experiments were repeated three times with similar experimental conditions and results
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the enhanced Raman signals at 1588 cm−1 were caused by 
DNA double-strand breaks (DSBs), which exposed N7-H 
in guanine and adenine (Fig.  2g) [46–48]. Therefore, 

by evaluating the SERS signal intensity at 1588  cm−1, it 
may be possible to perform label-free imaging of DNA 
DSBs in lymphoma slice samples. To further clarify the 

Fig. 3  (See legend on previous page.)
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significant role of silicon-based SERS substrates, we com-
pared the SERS enhancement of the lymphoma section 
samples to Ag NPs@Si substrates and pure silicon wafers 
under the same conditions. As shown in Fig. 2h, distinct 
SERS mapping signals at 1588  cm−1 of lymphoma slices 
were observed only on the constructed Ag NPs@Si sub-
strate rather than the silicon wafer, demonstrating that 
Ag NPs@Si substrate can effectively increase the intrinsic 
Raman signal intensity of lymphoma slice samples.

Detection of DNA double‑strand breaks by SERS
As the typical form of DNA fragmentation, DNA DSBs 
can be induced by UV irradiation and hydrogen per-
oxide treatment and are also present in many cellular 
events, such as apoptosis and inflammation [49–53].To 
demonstrate whether the change in the SERS signal at 
1588 cm−1 obtained from lymphatic sections was associ-
ated with DNA DSBs, we first extracted genomic DNA 
from RPMI cells and then treated them with or without 
UV irradiation (e.g., 0, 0.5, or 2  h), followed by SERS 
detection. As expected, after 2  h of UV irradiation, the 
extracted DNA showed the highest SERS spectral inten-
sity at 1588 cm−1 (Fig. 3a). Next, we investigated whether 
DNA DSBs in healthy doners would cause changes in 
SERS signaling at 1588  cm−1. Experimentally, HUT78 
cells were treated with or without H2O2 (e.g., 0, 100 μM, 
or 1 mM) for 4 h to induce different levels of intracellu-
lar DNA DSBs. Indeed, the Raman intensity at 1588 cm−1 
became progressively sharper when treated with higher 
concentrations of H2O2. As a result, the SERS profiles of 

the 1 mM H2O2-treated group showed more bright spots 
compared to the untreated and 100  μM H2O2-treated 
groups (Fig.  3b). These results indicated that the SERS 
spectra of genomic DNA samples treated with UV or 
hydrogen peroxide showed higher SERS signal intensity 
at 1588 cm−1.

To demonstrate that the SERS image could overlap 
with the clinical histological images, clinical paraffin-
embedded tissue of diffuse large B lymphoma was cut 
into several consequent sections. Specifically, the two 
sister sections were subjected to H&E staining and SERS 
mapping. As shown in Fig.  3c, three magnified regions 
(i.e., red, blue, and green frames) selected from the H&E 
image view of one sister slice were colocalized in the 
corresponding bright-field image in Raman mode of the 
other sister slice. Afterwards, the three chosen regions 
were subjected to SERS mapping. Typically, the region of 
damage (red frame), the boundary of cell inflammation 
(blue frame) and nonpathological regions (green frame) 
were clearly revealed by distinct SERS mapping signals. 
Ultimately, we used anti-H2AX (a phosphorylated his-
tone antibody) to visualize DNA DSBs by immunostain-
ing. As shown in Fig.  3d, the SERS signal at 1588  cm−1 
overlapped well with the immunofluorescence signal of 
H2AX, indicating that the SERS signal at 1588 cm−1 orig-
inated from the DSB of DNA. These results revealed that 
Ag NPs@Si enabled label-free detection of DNA DSBs in 
lymphoma sections.

The proposed strategy was based on SERS mapping 
with a size of 30 × 30 μm2. At such a size, it was necessary 

Fig. 4  SERS-AI platform for the diagnosis of lymphoma by combining SERS mapping and CNN. a The General schematic of the CNN model 
for recognition. The collected SERS imaging will be identified as healthy or NHL lymphoma. b Training of the CNN classifier. Healthy and lymphoma 
patient samples were randomly split into training (n = 810) and testing (n = 90) sets. All data were comprehensively labeled by sample type. c The 
structure of a CNN model. d The average accuracy for two lymphatic classes. Statistical analysis was performed using one-way ANOVA
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to accurately localize cancerous regions in heterogene-
ous lymphoma tissues. Therefore, we performed H&E 
staining, immunohistochemistry and bright-field colo-
calization in Raman mode on the collected lymphoma 
sections. As shown in Fig. 3e, vascular and extracellular 
matrix regions could be easily excluded from the H&E 
images and immune histochemical images of diffuse 
large B lymphoma samples (black frames) for SERS map-
ping. Regions with single-negative or double-negative 
CD20 and CD79a staining results were also excluded 
(red frames), whereas only regions with double-positive 
staining results were selected for SERS mapping by colo-
calization with the bright-face maps (yellow frames) in 
Raman mode. SERS profiles of normal lymphoid sam-
ples in the training dataset were collected from random 
areas of normal slices. In addition, we created a test data-
set containing 90 SERS imaging data points of randomly 
acquired solid regions, including cancerous, noncancer-
ous, and heterogeneous regions, from H&E images of 
mucosa-associated lymphoid tissues (MALT), follicular 
lymphomas, NK/T lymphomas, and peripheral T lym-
phomas (Fig. 3f ). This data acquisition method was closer 
to the actual diagnosis. After data acquisition, we found 
that the typical molecular images of normal lymphoid tis-
sues and NHL showed different densities of DNA DSB 
distribution. Among them, NHL had the higher density 
of DSBs, while normal tissues had the lower density of 
DSBs (Fig. 3g, and Figs. S4 & S5).

SERS‑AI platform for diagnosis of lymphoma by combining 
SERS mapping and CNN
For the discrimination of cancerous and noncancer-
ous clinical lymphoma samples in the CNN model, a 
dataset containing 900 SERS imaging data was first col-
lected by setting a standardized SERS mapping process. 
Then, in order to avoid the classifier being familiar with 
the data in the test set [54], 810 images of the above-
obtained molecular imaging dataset was randomly sep-
arated into training set for CNN training, and another 
90 images was randomly separated into test set for 
validation (Fig. 4a, b). After data collection, we built a 
deep convolutional neural network containing convolu-
tional layer, maxpooling layer, dropout layer and fully 
connected layer (Fig. 4c). Images in molecular imaging 
dataset were reshaped with a resolution of 119 × 119 
and convoluted by a filter of 5 × 5. After the training and 
testing of the CNN model in the training subset and the 
test subset, the CNN model performance reaches excel-
lent performance.

Of the 100 healthy samples, 90 were identified as 
healthy and 10 as NHL. 185 of the 200 NHL samples were 
identified as NHL, and 15 of the 200 NHL samples were 
identified as healthy. All three hundred healthy and NHL 
samples were identified as healthy and NHL with an iden-
tification rate of ~ 91.7%. Significantly, we further iterated 
the process of differentiating the test set data using the 
CNN for three times [55]. In detail, the accuracy on each 
of the three times was ~ 90%, ~ 91% and ~ 94%, the aver-
age accuracy was calculated as ~ 91.7 ± 2.1%. (Fig.  4d) 
[53–55]. Receiver operating characteristic (ROC) curves 
were further utilized to assess the performance (Figs. 
S6 & S7). The areas under the ROC curves of the three 
lymphatic classes were 0.90 for HC, 0.92 for NHL, dem-
onstrating an acceptable accuracy for lymphoma clas-
sification from lesions or minimally invasive lesions. In 
addition, we optimized the optimal number of epochs for 
CNNs and came up with an optimal epoch of 10 (Fig. S8) 
[53–55].

Conclusion
In summary, a novel AI-SERS strategy is developed for 
the rapid and minimally invasive diagnosis of lymphoma, 
in which UGCNB is used for sampling, SERS chip is 
employed for imaging of lymphoma samples and CNN is 
exploited for AI recognition. Of particular significance, 
two-dimensional SERS mapping of lymphoma tissues 
with an area of 900 μm2 could be achieved within 15 min, 
on the basis of which, clinic samples of healthy control 
and NHL are readily discriminated assisted by deep 
learning, with a high accuracy rate of up to ~ 91.7 ± 2.1%. 
These results open exciting opportunities for developing 
novel AI-based strategies for myriad biochemical analysis 
and detection, especially for rapid and noninvasive diag-
nosis of malignant tumors.
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