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Abstract 

Obesity is a major global health challenge, contributing to metabolic disorders such as type 2 diabetes, 
cardiovascular diseases, and hypertension. The increasing prevalence of obesity, driven by sedentary lifestyles, 
poor dietary habits, and genetic predisposition, underscores the urgent need for effective therapeutic strategies. 
Conventional pharmacological treatments, including appetite suppressants and metabolic modulators, often 
fail to provide sustainable weight loss due to side effects, poor adherence, and limited long-term efficacy. As 
a result, natural bioactive compounds have gained attention for their anti-obesity potential. However, their 
clinical application is hindered by poor bioavailability, rapid metabolism, and inefficient delivery. Lipid-based 
nano-carriers, including liposomes, solid lipid nanoparticles, and nanostructured lipid carriers, offer a promising 
solution by enhancing the solubility, stability, and targeted delivery of these compounds. These advanced delivery 
systems improve bioactive retention, enable controlled release, and enhance therapeutic action on adipose tissue 
and metabolic pathways. Additionally, functionalized and stimulus-responsive nanocarriers present innovative 
approaches for precision obesity treatment. Despite these advancements, challenges remain in large-scale 
production, regulatory approval, and long-term safety. Overcoming these barriers is critical to ensuring the successful 
clinical translation of nano-formulated therapies. This review explores the potential of lipid-based nano-carriers 
in optimizing the therapeutic efficacy of natural anti-obesity compounds and highlights their role in advancing next-
generation obesity management strategies.
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Graphical Abstract
 Lipid-based nano-carriers for the delivery of anti-obesity natural compounds (created in https://​BioRe​nder.​com)

Introduction
The increasing global epidemic of obesity features 
abundant body fat leading to multiple health dangers 
for both the body and metabolic system [1–3]. The 
global epidemic of obesity now affects millions of people 
worldwide while creating additional health problems 
including cardiovascular diseases and type 2 diabetes and 
certain cancers that have become more widespread [2, 4, 
5]. The World Obesity Federation (WOF) revealed that 
all countries are off track to meet the 2025 global targets 
which predicted that by 2025, global obesity prevalence 
could reach 18% in men and surpass 21% in women, 
with many countries experiencing higher levels [6]. Five 
countries—the US, China, Brazil, India, and Russia—
account for around a third of all cases of obesity in adults 
globally [6]. Obesity has significant financial and social 
impacts, with the total cost of high Body Mass Index 
(BMI) to health services globally being around US$990 
billion per year. Organizations around the world are 
calling for a re-evaluation of the approach to addressing 
obesity, which affects over 650 million adults and 125 
million children worldwide [6]. A concerning global 
phenomenon shows that high-income countries are not 
the only ones with rising obesity rates because low- and 
middle-income nations witness similar fast-growing 
obesity statistics together with ongoing food deficiencies 

[7–9]. The combination of obesity with other health 
conditions creates substantial medical expenses which 
burdens both healthcare systems and economies as well 
as strain individual healthcare needs so effective obesity 
management strategies require urgent public health 
attention.

The origins of obesity combine elements from 
biological inheritance and interaction with external 
environmental and human behavioural influences. The 
combination of dietary factors containing numerous 
calories together with nutrition-deficient food combined 
with inactive behaviours serves as the main cause in 
obesity epidemic expansion [10]. The challenge becomes 
more difficult because socioeconomic differences along 
with cultural patterns create obstacles to modifying 
dietary choices and boosting physical exercise. Current 
obesity intervention methods show insufficient results 
while medical practitioners recognize that innovative 
prevention solutions are necessary for obesity control 
because of its unrelenting prevalence [11, 12].

Clinical approaches to obesity treatment mainly 
depend on three components: lifestyle changes and 
medication administration and surgical treatment 
methods. Lifestyle alterations which combine food 
adjustments with physical activity level increases 
serve as the initial approach for obesity management 
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[13–15]. The long-term commitment to obesity 
treatment presents major obstacles because of human 
behaviour elements together with societal pressures 
and external environment factors which produce 
widespread treatment dropout rates [16, 17]. The 
treatment of obesity and related metabolic risks relies 
on pharmaceutical choices that include orlistat and 
liraglutide and phentermine-topiramate [18]. The 
medical drugs available for weight control demonstrate 
inconsistent success rates and expensive costs together 
with side effects which primarily affect digestive health 
and elevated cardiovascular health risks [19–22]. The 
treatments struggle to help entire segments of potential 
candidates because their effectiveness remains limited 
to select patient types. For patients dealing with severe 
obesity bariatric surgery combines gastric bypass and 
sleeve gastrectomy to provide better weight-loss results 
[23]. The weight loss potential of these procedures 
remains significant yet patients must face expensive 
invasive surgery alongside possible surgical complications 
including long-term nutritional deficiencies and high 
costs [18]. These operations exist primarily for obese 
patients who cannot benefit from standard interventions 
or people with severe obesity [24–26].

New medical treatments still require development 
because existing methods do not deliver both adequate 
safety and acceptable accessibility and wild success. 
Bio-resource compounds obtained from plant and 
marine organism and microorganism sources display 
substantial promise to fill the therapeutic void [3, 27, 
28]. Through traditional medicine people have employed 
natural compounds since ancient times to manage 
diverse health disorders especially metabolic conditions 
[29, 30]. Current scientific investigations emphasize 
bioactive molecules as treatment candidates for obesity 
reduction. The pharmacological properties of drugs like 
polyphenols and alkaloids with terpenoids and saponins 
and flavonoids show broad potential in targeting multiple 
obesity-related mechanisms [31, 32]. Research shows that 
these compounds reduce inflammation while providing 
antioxidant protection and breaking down fats and 
triggering thermogenic responses as well as controlling 
hunger levels and improving insulin response [2, 33].

Fighting oxidative stress through antioxidants such as 
epigallocatechin gallate (EGCG) and quercetin combines 
the potent anti-inflammatory properties of curcumin and 
resveratrol [34–36]. The natural substances berberine 
and chlorogenic acid activate better insulin function 
while enhancing glucose processing abilities [37]. The use 
of natural compounds remains preferred because these 
substances demonstrate greater clinical effectiveness 
with reduced safety risks and lower adverse effects than 
pharmaceutical drugs. In resource-limited settings their 

widespread availability combined with less expensive 
costs make them highly desirable for use [37–40]. The 
therapeutic pathways of natural compounds remain 
underexplored because they encounter limitations 
relating to their stability and bioavailability requirements 
and targeted delivery frameworks.

Traditional delivery methods limit the clinical 
effectiveness of natural compounds because they suffer 
from low aqueous solubility and poor absorption as well 
as rapid metabolism together with essential delivery 
limitations and instability [41, 42]. The therapeutic 
advantages of such compounds require sophisticated 
delivery technology because current challenges persist. 
The delivery of drugs through lipid-based nano-carriers 
such as liposomes along with solid lipid nanoparticles 
(SLNs) and nanostructured lipid carriers (NLCs) corrects 
the deficiencies of traditional delivery approaches [2, 42]. 
Lipid-based delivery systems increase drug solubility 
and stability and boost bioavailability and controlled 
drug release capabilities and provide targeted delivery 
within safe biocompatible frameworks [34]. Results from 
recent research showcase potential benefits through 
these delivery systems. The incorporation of curcumin 
into liposomes led to enhanced metabolic function 
and decreased body fat accumulation compared to 
unencapsulated curcumin while solid lipid nanoparticles 
containing [43, 44]. EGCG produced superior anti-
obesity effects to free EGCG. Using natural compounds 
alongside lipid-based nano-carriers enables researchers 
to transform the way they approach obesity treatment 
[45–47]. By integrating these delivery methods, 
traditional issues fade away while establishing avenues 
toward customized precision medicine. Future research 
must focus on both improving nano-carrier technology 
advancement and assessing their safety profile and 
enduring efficacy potential. Regulatory institutions 
must develop updated guidelines which recognize 
these new treatments as they enter the market. The 
extensive problems caused by obesity call for strategies 
which extend past existing medical strategies. Natural 
compounds used with lipid-based nano-carriers provide 
a growing solution for practical obesity treatments. The 
optimization of natural products into clinical applications 
through this therapeutic strategy presents a meaningful 
contribution to obesity treatment efforts.

Our previous studies have demonstrated the efficacy of 
bioactive compounds from natural sources in modulating 
lipid metabolism and mitigating obesity-related 
complications. Okoh et  al. [48] identified bioactive 
compounds from Trigonella foenum-graecum as potential 
inhibitors of peroxisome proliferator-activated receptor 
gamma (PPARγ) through molecular docking, indicating 
their therapeutic potential in metabolic disorders. 
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Aja et  al. [49] reported that Cucumeropsis mannii 
seed oil ameliorated bisphenol A-induced adipokine 
dysfunction and dyslipidemia, underscoring the lipid-
modulating capabilities of plant-based compounds, and 
Cucumeropsis mannii seed oil is rich in unsaturated fatty 
acids (USFA), with linoleic acid being the dominant fatty 
acid, followed by oleic acid [50]. In  vivo studies further 
support the anti-obesity effects of natural compounds. 
Uti et  al. [2] demonstrated that African walnuts 
(Tetracarpidium conophorum) mitigate hepatic lipid 
accumulation by modulating HMG-CoA reductase and 
paraoxonase activity. Umoru et  al. [3] extended these 
findings by showing that African walnuts upregulate 
adiponectin and PPARγ expression while suppressing 
TNF-α gene expression in obesity models, providing 
a mechanistic basis for their lipid-lowering and anti-
inflammatory effects. Additionally, Uti et al. [51] reported 
that Buchholzia coriacea leaves attenuated dyslipidemia 
and oxidative stress in hyperlipidemic rats, reinforcing 
their potential role in obesity management. Histological 
and biochemical evidence from Atangwho et  al. [52] 
demonstrated the benefits of Vernonia amygdalina 
supplementation in obese rats, highlighting the 
metabolic health improvements associated with natural 
compounds. More recently, Puri et  al. [53] emphasized 
the role of nanotechnology in modern healthcare, 
integrating traditional medicine, green chemistry, and 
biogenic metallic phytonanoparticles to enhance the 
bioavailability and efficacy of therapeutic compounds.

Other studies with similar viewpoints on the role of 
natural compounds in obesity management include; 
Mahboob et al. [54] who examined the anti-obesity effects 
of flavonoids, particularly quercetin and resveratrol, in 
modulating lipid metabolism via AMPK activation and 
adipogenesis inhibition, Zhang et  al. [55] investigated 
berberine’s effects on lipid metabolism and its potential 
in reducing obesity-related complications by targeting 
gut microbiota and mitochondrial function, Zou et  al. 
[56] reported the role of curcumin in attenuating obesity-
induced inflammation and lipid dysregulation through 
the modulation of PPARγ and NF-κB pathways, and 
Basu et  al. [57] demonstrated that green tea catechins 
promote thermogenesis and improve lipid metabolism 
by upregulating UCP1 in adipose tissues, and Feng et al. 
[58] studied the effects of ginsenoside Rg3 on adipocyte 
differentiation and lipid accumulation, highlighting their 
role in regulating key metabolic pathways in obesity 
management.

Building on these recent findings, this review explores 
cutting-edge advancements in lipid-based nano-carrier 
systems for delivering anti-obesity natural compounds. 
We highlight how these innovative platforms address 
limitations of conventional therapies, opening avenues 

for targeted and personalized obesity treatment. Key 
classes of bioactive phytochemicals such as polyphenols, 
alkaloids, terpenoids, and saponins are examined for 
their therapeutic potential, alongside challenges like 
poor bioavailability and stability. Advanced delivery 
systems, including liposomes, solid lipid nanoparticles 
(SLNs), and nanostructured lipid carriers (NLCs), are 
discussed for their roles in enhancing solubility, targeted 
delivery, and sustained release. We also look into 
recent strides in precision therapeutics, emphasizing 
nanotechnology’s promise in tissue-specific targeting 
and stimuli-responsive drug release. Finally, the 
review addresses safety, regulatory challenges, and the 
translational prospects of these systems in clinical obesity 
management.

Methodology
A thorough literature search was conducted using 
electronic databases, including PubMed, Scopus, Web 
of Science, and Google Scholar, to retrieve relevant 
studies on lipid-based nano-carriers for the delivery 
of anti-obesity natural compounds. The search 
strategy incorporated key terms such as "lipid-based 
nano-carriers," "anti-obesity natural compounds," 
"nanotechnology in obesity treatment," "bioavailability 
enhancement," and "targeted drug delivery." Selected 
articles comprised studies that focused on lipid-based 
nano-formulations, evaluated their bioavailability and 
therapeutic efficacy, and assessed their role in obesity 
management. Studies exploring nano-carrier types 
such as liposomes, solid lipid nanoparticles (SLNs), 
nanostructured lipid carriers (NLCs), and other advanced 
lipid-based delivery systems were prioritized. Non-peer-
reviewed publications, studies that did not specifically 
address lipid-based nano-carrier applications in obesity, 
research lacking mechanistic insights or therapeutic 
assessments, and studies published before 2019 were 
excluded. However, exceptions were made in a few cases 
where the studies were deemed significant and formed 
the foundation of this review.

Natural compounds with anti‑obesity potential
Categories of natural anti‑obesity compounds
Polyphenols
The bioactive compounds called polyphenols found 
throughout multiple plant-based sources demonstrate 
potential for fighting obesity [59, 60]. Natural 
polyphenolic compounds create a comprehensive weight 
loss solution through their multiple pathways which 
control energy and lipid metabolism while reducing 
inflammation. The diverse biological characteristics 
of these compounds prove their capacity to reduce 
inflammation and protect cells from damage and 
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manage metabolic functions [61, 62]. The modulation 
of adipogenesis signaling pathways together with 
thermogenesis and mitochondrial pathways and 
lipid metabolism pathways demonstrates potential 
in combating obesity alongside its related medical 
complications. Manufactured from natural resources 
and exhibiting minimal adverse effects they become 
appealing as therapeutic options [63].

Table  1 presents comprehensive information about 
polyphenols that show anti-obesity potential through an 
analysis of their sources and mechanisms and research 
status with identified challenges. The table presents ten 
essential polyphenols including resveratrol catechins 
curcumin quercetin which exhibit distinct anti-obesity 
mechanisms through enhancing fatty acid oxidation 
and inhibition of lipogenesis combined with stimulation 
of mitochondrial biogenesis and their promotion of 
beneficial gut microbiota. The diverse results achieved 
through preclinical and clinical work demonstrate the 
vast difficulty in developing these drugs into successful 
medical interventions. The clinical use of polyphenols 
faces major problems including poor chemical 
accessibility and fast destruction in the human body as 
well as reduced stability in natural environments. The 
limited therapeutic potential of polyphenols requires 
innovative delivery systems including nanoparticles and 
liposomes combined with sustained-release formulations 
to enhance their therapeutic outcomes. Large-scale 
clinical studies of polyphenols must occur to validate 
their safety practices with effectiveness across various 
population groups. This analysis examines the obesity 
prevention capacity of these polyphenols while discussing 
their action pathways and investigation progress along 
with existing obstacles and upcoming research objectives.

Alkaloids
The research community is strongly interested in 
alkaloids and other natural products because these 
substances show multiple bioactive properties and show 
promise for managing essential metabolic pathways 
controlling energy balance along with lipid levels [83, 
84]. The pharmacologically active compounds known 
as alkaloids derive from plants and contain nitrogen 
structures are known to produce anti-obesity effects 
[85–87]. An Assessment of Selected Alkaloids Exhibiting 
Anti-Obesity Potential can be Found in Table  2; This 
document shows the alkaloids’ natural origins and their 
mechanisms of action as well as the research progress 
and effectiveness along with obstacles to their adoption 
as weight loss agents and future development targets. 
Berberine and caffeine among other alkaloids alongside 
harmine and quinidine demonstrate anti-obesity effects 
through multiple mechanisms such as thermogenic 

activation and appetite control and adipocyte 
differentiation blockade. The clinical application of these 
substances faces multiple roadblocks which include 
poor bioavailable properties and issues with safety and 
approval process requirements. A detailed discussion 
regarding alkaloid research for obesity management 
presents both development achievements in this field 
but stresses the requirement for imaginative approaches 
to increase their therapeutic effectiveness along with 
sophisticated delivery systems and optimized alkaloid 
structures while employing holistic wellness practices has 
been summarized as given in Table 2.

Terpenoids
Terpenoids represent a widespread group of naturally 
existing organic substances which have become 
prominent targets for researchers developing anti-obesity 
therapeutic strategies [110–112]. Terpenoids derived 
from multiple plant substances possess distinctive 
chemical designs which exhibit specific active properties 
that represent a promising solution beyond traditional 
drug therapies [34, 113]. Table  3 summarizes the anti-
obesity benefits of terpenoids showing their methods of 
operation together with their effectiveness throughout 
different study stages and existing barriers. The four 
terpenoids forskolin and ginsenoside Rb1 along with 
limonene and curcumin influence distinct metabolic 
processes that involve changes in lipid levels and 
increased energy utilization and diminished fat cell 
formation. The table presents a summary of compound 
translational progression beginning with preclinical 
assessment moving onto clinical trials and featuring 
several compounds that display both fat mass reduction 
and improved metabolic health metrics.

The clinical application of terpenoids for anti-obesity 
treatment remains hindered by restricted bioavailability 
and high extraction costs as well as inadequate 
human clinical research data. Certain terpenoids 
require additional development because they produce 
side effects involving blood pressure reduction and 
gastrointestinal distress. Future studies focusing on 
bioavailability improvement and dosage refinement and 
combinatorial treatment methods will help to overcome 
current terpenoid utilization constraints and improve 
their clinical potential. Table  3 examines terpenoids’ 
therapeutic potential through mechanistic understanding 
and effectiveness reviews coupled with documented 
limitations toward their application for obesity treatment.

Saponins with anti‑obesity potentials
Plants produce naturally occurring glycoside compounds 
known as saponins have been identified as effective 
agents for obesity treatment along with associated 
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metabolic disorders [2, 138]. Research has found that 
these bioactive compounds are distributed in plant 
species and these compounds have demonstrated 
several pharmacological activities which include anti-
inflammatory, antioxidant properties and glucose-
lowering effects [139–141]. The potential therapeutic 
effects of saponins on essential metabolic pathways 
which target insulin signaling and glucose uptake while 
inhibiting carbohydrate-digesting enzymes position them 
as possible agents for new anti-obesity treatments [2, 
142, 143].

A review of some selected anti-obesity saponins is 
presented in Table  4 which details source species and 
study levels together with operational mechanisms of 
these compounds. The saponins obtained from Dioscorea 
nipponica dioscin and from Astragalus membranaceus 
astragaloside IV have shown promising outcomes in 
preclinical research yet their translation into clinical 
practice encounters obstacles because of restricted 
bioavailability and transient human trials and toxicity 
risks. The future of saponin therapy benefits from 
improvements in formulation research and delivery 
system design that should overcome these scientific 
hurdles. Future research must determine the underlying 
mechanisms of saponin anti-obesity properties while 
concurrently resolving existing hurdles to enable their 
utilization in obesity treatment programs. A detailed 
exploration of saponins’ distinct features and weight-
loss aspirations and associated research hurdles leads 
this section towards future perspectives for obesity 
treatment.

Other bioactives in obesity management
The rising epidemic of obesity has motivated researchers 
to explore bioactive compounds which might fight 
obesity alongside conventional treatment methods [164, 
165]. Multiple bioactive compounds have shown anti-
obesity potential as documented in Table  5. Bioactive 
compounds from diverse natural sources such as 
plants, algae and marine organisms operate through 
distinct weight management mechanisms that support 
fat metabolism while boosting heat generation and 
suppressing hunger and regulating metabolic processes.

The analyzed compounds cover preclinical and clinical 
research work that demonstrates variable success 
rates for obesity management according to the table. 
Multiple factors control weight management success 
with bioactive compounds such as bioavailability levels 
and prescribed dosages as well as how individuals react 
differently to them. The development of these compounds 
as anti-obesity agents faces ongoing constraints 
including limited proven therapeutic value together 
with high operational costs and safety implications for 

public use. Even with their present challenges many 
bioactive substances demonstrate impressive potential 
through positive results in preclinical research while 
demonstrating reasonable effects during clinical testing.

The data strongly indicates we need more research 
to maximize the potential of bioactives for obesity 
prevention and therapy. The research will develop better 
drug delivery systems to increase compound absorption 
while scientists will test optimal medication doses on 
many patients for complete safety understanding and 
practitioners will investigate combining drugs to develop 
most effective therapies. Our enhanced knowledge of 
these bioactive compounds has the potential to produce 
ground-breaking prevention and treatment solutions for 
obesity that offer fresh hope against this common health 
issue.

Mechanisms of action of natural compounds in obesity 
management
The growing global incidence of obesity has made natural 
bioactive compounds more appealing than ever as 
prospective therapeutic agents. Compounds extracted 
from plants including polyphenols together with alkaloids 
terpenoids saponins and other substances attack central 
obesity-linked biological processes (Fig.  1, Tables  1–5). 
Briefly, Fig. 1, outlines the mechanisms of phytochemicals 
in obesity management, including enhancement of 
fatty acid oxidation through polyphenolic compounds 
like resveratrol, epigallocatechin gallate (EGCG), and 
quercetin, inhibition of lipogenesis by blocking fat 
synthesis enzymes, activation of thermogenesis by 
alkaloids like synephrine and yohimbine, modification 
of gut microbiota by promoting beneficial gut bacteria 
growth, suppression of appetite by modulating hunger-
related hormones like leptin and ghrelin, and anti-
inflammatory and antioxidant effects by curcuminoids 
and omega-3 fatty acids. These mechanisms collectively 
contribute to obesity management by targeting multiple 
metabolic pathways.

Research shows that polyphenolic compounds 
including resveratrol and EGCG, and quercetin and 
curcumin enhance fatty acid oxidation while blocking 
lipogenesis and stimulating mitochondrial growth [34, 
187]. The compounds cause changes to the composition 
of gut microbiota while promoting better metabolic 
outcomes. Some alkaloids like caffeine along with 
capsaicin and yohimbine and synephrine elevate 
thermogenesis while decreasing appetite and boosting 
energy expenditure but they present cardiovascular 
safety concerns [188]. Although terpenoids including 
limonene, linalool, carvone, and menthol successfully 
regulate lipid metabolism and boost energy expenditure 
while blocking adipocyte differentiation these 
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compounds face obstacles due to gastrointestinal side 
effects and their high manufacturing costs [34, 34]. 
Advanced delivery systems are needed to overcome the 
poor absorption and variable efficacy of saponins which 
include diosgenin, ginsenosides, quillaic acid, and escin 
properties that enhance glucose uptake while improving 
insulin signaling and reducing oxidative stress [189–191]. 
The bioactive compounds curcuminoids and gingerols 
along with omega-3 fatty acids and conjugated linoleic 
acid (CLA) display anti-inflammatory action and impact 
gut microbiota regulation and lipid metabolic efficiency 
despite requiring improved stability and scaling methods 
[192–194].

Lipid‑based nano‑delivery systems
Nanocarriers constructed from lipids have evolved 
into a ground-breaking massive approach for obesity 
management which offers new solutions to standard 
therapeutic obstacles [34, 34]. The nanocarriers provide 
superior biological tolerance in addition to drug molecule 
encapsulation capabilities and natural barrier penetration 
properties [34, 195]. Engineers at the nanoscale level have 
developed lipid-based nanocarriers which improve active 
agent delivery efficiency by solving obesity treatment 
challenges of poor bioavailability and nonspecific 
targeting [196, 197]. The structural composition of 

these systems consists mainly of lipids because these 
molecules naturally attract cellular membranes which 
enables better drug uptake and precise medication 
release and enhanced therapeutic effectiveness [198, 
199]. The extensive loading capacity of these platforms 
allows them to contain drugs and peptides alongside 
nucleic acids therefore enabling use across metabolic 
complication investigation of obesity pathways. Lipid-
based nanocarriers present therapeutic opportunities for 
obesity treatment and their current applications together 
with remaining barriers to reach their full therapeutic 
capabilities in managing this worldwide health issue are 
analyzed in this section.

Types of lipid‑based nanocarriers
Lipid-based nanocarriers can be broadly classified 
into several types (Fig.  2) each with distinct 
structures, properties, and applications [200–202]: 
Fig.  2 summarizes various lipid-based nano-delivery 
systems for delivering phytochemicals in obesity 
management. These systems include liposomes, solid 
lipid nanoparticles, nanostructured lipid carriers, 
exosomes and lipid-based biomimetic nanocarriers, 
and self-emulsifying drug delivery systems. Liposomes 
are spherical vesicles with phospholipid bilayers, while 
solid lipid nanoparticles enhance drug stability and 

Fig. 1  Mechanisms of Phytochemicals in Obesity Management (Created in https://​BioRe​nder.​com). This figure illustrates the diverse mechanisms 
through which phytochemicals exert anti-obesity effects. It shows that polyphenols such as resveratrol, epigallocatechin gallate (EGCG), 
and quercetin enhance fatty acid oxidation, inhibit lipogenesis by downregulating fat synthesis enzymes, and promote mitochondrial biogenesis. 
Additionally, alkaloids like synephrine ephedrine, and caffeine stimulate thermogenesis and increase energy expenditure, while also suppressing 
appetite by modulating hormones such as leptin and ghrelin. The figure further highlights how certain bioactives influence gut microbiota 
composition, encouraging the proliferation of beneficial bacteria. Moreover, compounds like curcumin and omega-3 fatty acids contribute 
anti-inflammatory and antioxidant effects, thereby mitigating metabolic stress. Collectively, these phytochemicals act on multiple molecular 
pathways to provide a comprehensive approach to obesity management

https://BioRender.com
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controlled release. Nanostructured lipid carriers combine 
solid and liquid lipids, while exosomes and lipid-based 
biomimetic nanocarriers mimic biological lipid bilayers. 
Self-emulsifying drug delivery systems form oil-based 
formulations in the gastrointestinal tract, improving drug 
solubility and absorption. These lipid-based nanocarriers 
offer advantages such as enhanced solubility, increased 
bioavailability, better stability, controlled drug release, 
and targeted delivery of natural compounds.

Liposomes
Liposomes with a phospholipid bilayer can offer a 
hydrophilic core for hydriphilic drugs with a hydrophobic 
shell for hydrophobic drugs [34]. These lipid-based 
nanocarriers emerged during the 1960s and subsequently 
established themselves as the most investigated delivery 
systems in modern drug delivery. Fluid expertise 
separates liposomes into unilamellar vesicles which 
combine single lipid bilayers with small unilamellar 
vesicles (SUVs) and large unilamellar vesicles (LUVs) 
categories alongside multilamellar vesicles (MLVs) 
that use multiple lipid bilayers [203]. Because of their 
distinctive design and compatibility with biological 
substances liposomes serve as fundamental elements 

of pharmaceutical creation to ensure targeted drug 
delivery systems. Doxil® (doxorubicin liposomes) 
represents a liposome-based formulation that now holds 
FDA approval for cancer therapy through improved 
therapeutic index and reduced agent-related systemic 
toxicity [204, 205].

Solid lipid nanoparticles (SLNs)
Solid lipid nanoparticles (SLNs) represent sophisticated 
drug delivery methods that incorporate solid lipids 
which stay structurally sound at normal temperatures 
and body temperatures for improved delivery flexibility 
and consistency [206]. The hydrophobic core of these 
nanoparticles stays solid and protected by a protective 
phospholipid or surfactant monolayer that promotes 
both structural protection and biological compatibility. 
SLN solid matrices function both to protect drugs by 
creating barriers against environmental elements while 
providing physical stability through their protective 
barrier formation which improves drug shelf life and 
pharmacological effectiveness [207, 208]. SLNs represent 
an ideal drug delivery method for lipophilic substances 
because they both enhance drug solutions and increase 
drug availability when drugs remain dissolved in their 
hydrophobic core. Trapped within SLNs patients 

Fig. 2  Lipid-based nano-delivery systems for phytochemicals (drugs) delivery in obesity management (created in https://​BioRe​nder.​com). This 
Figure provides a schematic overview of various lipid-based nano-delivery systems designed to enhance the therapeutic efficacy of natural 
anti-obesity compounds. It presents liposomes as spherical vesicles with phospholipid bilayers capable of encapsulating both hydrophilic 
and hydrophobic molecules, thereby improving solubility and stability. Solid lipid nanoparticles (SLNs) are highlighted for their enhanced drug 
stability and controlled release properties, whereas nanostructured lipid carriers (NLCs) combine solid and liquid lipids to provide greater drug 
loading capacity and reduce premature release. The figure also illustrates lipid micelles, which are self-assembled amphiphilic carriers that improve 
the solubility and absorption of poorly water-soluble phytochemicals. Exosomes and biomimetic nanocarriers mimic biological lipid bilayers 
and offer efficient cell targeting with minimal immunogenicity. Lastly, self-emulsifying drug delivery systems (SEDDS) are shown to enhance 
gastrointestinal absorption by forming fine emulsions that improve solubility and bioavailability of lipophilic compounds. Together, these systems 
represent advanced strategies for improving the delivery, stability, and efficacy of phytochemicals in obesity therapy

https://BioRender.com
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experience controlled release properties because the 
materials provide a gradual time-release mechanism that 
also means less frequent dosing [209, 210]. The controlled 
drug release capability has clear value for medication 
delivery of precise amounts when combined with drugs 
whose body clearance rates remain rapid over time. The 
special features of solid lipid nanoparticles position them 
as an effective delivery method that benefits complex 
medicinal formulations.

Nanostructured lipid carriers (NLCs)
Nanostructured Lipid Carriers (NLCs) function as 
improved derivatives of SLNs because they expand 
upon solid lipid nanoparticles to overcome specific 
formulation constraints. NLCs achieve their functional 
enhancements through the combination of solid and 
liquid lipids which leads to formation of an imperfect 
crystalline matrix [211, 212]. This matrix improves drug 
storage capacity while protecting drug contents from 
unexpected release during storage periods which often 
affects SLN systems. Liquid lipids added to systems 
loosen solid lipids’ perfect crystal arrangement which 
allows larger Active Pharmaceutical Ingredient (API 
volumes to fit within created spaces. NLCs demonstrate 
excellent suitability for trapping drugs that resist water 
dissolution making them valuable for drug delivery 
applications. Supercritical carbon dioxide processed 
NLCs demonstrate multiple medical applications because 
they improve both the drug bioavailability and delivery 
while minimizing systemic chemical reactions in cancer 
treatments [213, 214]. Science-based dermatological 
applications use NLCs to deliver active compounds 
within skincare products where they enhance penetration 
depth and maintain compound availability over time. 
Their ability to penetrate biological barriers enables their 
use in central nervous system (CNS) disorders thereby 
providing promising drug delivery methods to regions 
where traditional methods prove inadequate [214]. NLCs 
continue to gain significance in pharmaceutical therapies 
because these systems demonstrate fundamental 
versatility in diverse drug delivery settings.

Lipid micelles
Lipid Micelles are simple structure of amphiphilic lipids 
caused by self-assembly in aqueous solutions. Lipid 
self-organization occurs through their amphiphilic 
behaviour which produces small spheres that combine 
their lipophilic tails into a central hydrophobic domain 
while their hydrophilic heads reside at the exterior 
to connect with aqueous environments [215]. Lipid 
micelles possess a hydrophobic core combined with 
a hydrophilic shell that creates a structure which 
effectively encapsulates poorly soluble drugs located 

inside the core. Through their encapsulating ability 
lipid micelles optimize therapeutic outcomes by 
improving the absorption of water-solubility limited 
drugs that are vital in pharmaceutical products. Lipid 
micelles effectively solubilize drug compounds while 
they protect the drugs through stability maintenance 
alongside prevention of degradation and facilitate 
greater systemic absorption [216]. Drug delivery 
systems utilizing biocompatible lipid micelles at 
the nanoscale work effectively to address delivery 
challenges in clinical conditions.

Exosomes and lipid‑based biomimetic nanocarriers
Nature produces exosomes as extracellular vesicles 
that enable cellular intercommunication through the 
transfer of proteins and nucleic acids and lipids between 
cells. Researchers apply exosome-inspired biomimetic 
lipid-based nanocarriers to construct therapeutic 
platforms that replicate exosome features [217]. The 
engineered nanocarriers duplicate exosomal lipid 
bilayers through engineered design enhancements which 
improve stability and enhance delivery targeting with 
minimized compatibility issues [218]. Nanocarriers built 
with biomimetic lipid structures display exceptional 
potential as drug delivery platforms for obesity 
therapy. Nanocarriers can transport anti-obesity drugs 
towards adipose tissues and metabolic organs by 
wrapping ligands, peptides, or antibodies which bind 
receptors present on both adipocytes and hepatic cells. 
Nanocarriers provide a vehicle to carry nucleic acids 
while enabling gene therapy affecting obesity-relevant 
genes and generating anti-inflammatory outcomes 
[219–221].

The delivery of exosome-like nanocarriers through 
the body leads to microbiome restoration along with 
improvements in lipid metabolism and energy balance 
and reduced obesity-linked systemic inflammation 
[222]. These nanocarriers shield natural compounds 
including curcumin and resveratrol and catechins from 
gastrointestinal breakdown while enabling their better 
absorption and targeted transport to adipose tissues 
and metabolic organs [223]. Biomimetic lipid-based 
nanocarriers’ applications to manage obesity encounter 
obstacles stemming from complicated production 
methods alongside storage requirements and regulatory 
approval difficulties. Future investigators should 
concentrate their efforts on three main research aspects: 
developing precise target delivery through advanced 
ligand engineering [224, 225], creating manufacturing 
methods with scalability and low production costs and 
performing extensive proof-of-concept experiments 
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coupled with clinical investigations to assess therapeutic 
safety and effectiveness.

Self‑emulsifying drug delivery systems (SEDDS)
SEDDS represents a novel formulation technology 
using an isotropic blend of oils and surfactants with 
co-surfactants capable of forming small emulsion 
droplets automatically after mixing with aqueous 
gastrointestinal fluids [226, 227]. The attractiveness 
of self-emulsifying drug delivery systems in obesity 
management derives from their ability to increase 
solubility alongside improving both stability and 
bioavailability rates of drug substances that target 
metabolic pathways related to obesity [228]. Current 
therapeutic medications used to treat obesity encounter 
several problems since they dissolve poorly in water and 
show low bioavailability. The oil phase of SEDDS contains 
encapsulated hydrophobic drugs that enable quick 
passage through gastrointestinal tract fluids because 
they bridge liquid phases efficiently thereby enhancing 
both drug absorption and efficacy [229]. Controlled 
by surfactants along with co-surfactants the SEDDS 
system enables quick emulsification and maintains drug 
continuity through sustained dispersion to achieve 
consistent dosing outcomes and predictable drug effects 
[229]. Oral delivery using SEDDS systems acts as a 
practical method to distribute lipophilic compounds 
which target lipid metabolism while regulating appetite 
and absorbing fat. The combination of solubility and 
absorption barrier modification in SEDDS establishes 
this pharmaceutical approach as a strong solution for 
obesity drug delivery efficiency.

Table 6 provides a comparative analysis of the various 
lipid-based nanocarriers, highlighting their structural 
characteristics, advantages, and limitations. The table 
categorizes key nanocarriers, including liposomes, 
solid lipid nanoparticles (SLNs), nanostructured lipid 
carriers (NLCs), lipid micelles, exosomes, and self-
emulsifying drug delivery systems (SEDDS). Each type 
is assessed based on its advantages over conventional 
formulations, its suitability for encapsulating natural 
compounds, and potential challenges in formulation and 
clinical application. By understanding the strengths and 
weaknesses of these systems, researchers can optimize 
their use in obesity therapy, paving the way for more 
effective and targeted treatment strategies.

Advantages of lipid‑based nano‑carriers in natural 
compound delivery
Lipid-based nanocarriers represent a notable 
development in drug delivery, owing to their capacity to 
carry bioactive molecules, especially natural products, 
to designated target locations. Nano-carriers, such 

as lipid nanoparticles (LNPs), liposomes, solid lipid 
nanoparticles (SLNs), and nanostructured lipid carriers 
(NLCs), provide numerous benefits for the delivery of 
natural compounds, including increased solubility and 
bioavailability, enhanced stability, and regulated release 
[34, 242–244].

Enhanced solubility and bioavailability
Natural chemicals, including polyphenols, flavonoids, 
alkaloids, terpenoids, and other plant-derived bioactives, 
often exhibit inadequate water solubility and diminished 
bioavailability. Lipid-based nano-carriers significantly 
enhance the solubility of hydrophobic substances 
by forming nanoscale structures that encapsulate 
bioactive molecules inside or on the lipid matrix’s 
surface. Liposomes are spherical vesicles formed by 
lipid bilayers capable of encapsulating both hydrophilic 
and hydrophobic substances. Earlier reports have 
supported the role of lipid-based nano-carriers, including 
liposomes, enhance the solubility and bioavailability of 
plant-derived bioactives such as polyphenols, flavonoids, 
alkaloids, and terpenoids: Janet et  al.[245], in their 
study explores the role of lipid-based nano-carriers in 
improving the solubility and bioavailability of poorly 
soluble bioactive compounds. The study highlighted 
how liposomes encapsulate both hydrophilic and 
hydrophobic molecules, thereby enhancing their stability 
and bioavailability. In another study by Hu et  al. [246], 
this study evaluates the pharmacokinetics of liposome-
encapsulated polyphenols and demonstrates a significant 
improvement in bioavailability compared to free-form 
compounds, and Pugazhendhi et  al. [246], discussed 
nano-liposomes as efficient carriers for plant bioactives, 
including their ability to enhance solubility and control 
the release of bioactive molecules for better therapeutic 
effects.

Enhanced absorption and bioavailability
The solubility of bioactive natural chemicals is greatly 
increased using lipid-based nano-carriers, leading to 
enhanced absorption in the gastrointestinal (GI) tract. 
Liposomes replicate the natural processes of lipid 
digestion and absorption, enhancing the bioavailability 
of the substances. Moreover, these nano-carriers 
safeguard bioactive substances against enzymatic 
degradation in the gastrointestinal system, so averting 
premature breakdown prior to absorption, which 
further improves their bioavailability. The reports by 
Subramanian [247], and Liu et  al. [248] highlighted 
the potential of lipid-based nanocarriers in improving 
the solubility and bioavailability of bioactive natural 
chemicals. These carriers facilitate enhanced absorption 
through solubilization in the intestinal milieu, intestinal 
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lymphatic transport, and modification of enterocyte-
based transport [248]. They also protect bioactives from 
degradation by preserving their functional integrity. 
Lipid-based nanocarriers include liposomes and 
niosomes, solid lipid nanoparticles and nanostructured 
lipid carriers, and self-emulsifying drug delivery 
systems [248]. These carriers have shown clinical and 
pharmacokinetic improvements, such as increased 
bioavailability of compounds like curcumin, quercetin, 
and resveratrol. Lipid-based formulations also have 
potential for functional foods and pharmaceuticals, as 
they enable stable and effective delivery of poorly water-
soluble compounds in food and medical applications.

Enhanced stability of bioactives
Lipid-based nano-carriers provide superior protection 
against environmental stressors like light, oxygen, and 
heat. Encapsulating these molecules inside lipid matrix 
protects them from external influences that may cause 
deterioration. Lipid nanoparticles serve as a protective 
barrier, preserving the integrity of encapsulated bioactives 
for extended durations. Liposomes can efficiently 
safeguard their contents from oxidation and hydrolysis 
by enclosing them inside an anhydrous lipid core, while 
solid lipid nanoparticles (SLNs) may inhibit oxidative 
degradation by offering a solid lipid matrix. Previously, 
some studies have reported the protective role of lipid-
based nano-carriers against oxidation and hydrolysis: 
Viegas et al. [249], in their study, they reported the role of 
lipid-based nanocarriers in encapsulation and protection 
of bioactive compounds. This paper discusses how 
liposomes and solid lipid nanoparticles (SLNs) protect 
bioactives from oxidation and degradation. In another 
study by Nahum and Domb [250], Nanoencapsulation of 
food ingredients using lipid-based delivery systems" was 
reported. The study highlights how lipid nanoparticles 
(SLNs and nanostructured lipid carriers, NLCs) enhance 
the oxidative stability of encapsulated molecules. These 
provide strong evidence that lipid-based nano-carriers 
enhance the stability of encapsulated bioactives against 
oxidation, hydrolysis, and other degradative factors.

Improved shelf life and storage stability
Lipid-based nano-carriers augment the shelf life of 
natural bioactives by reducing degradation during 
storage. Stability studies of liposomal formulations by 
Pasarin et  al. [251], and Rezagholizade-shirvan et  al. 
[251] indicate that they may preserve the integrity of the 
encapsulated ingredient throughout prolonged storage, 
which is particularly advantageous in the creation of 
nutraceuticals and medicines derived from natural 
materials. This guarantees that the bioactive components 

maintain their potency and effectiveness throughout 
time.

Lipid-based nano-carriers provide targeted and 
sustained release of natural bioactives, allowing for 
regulated delivery of the encapsulated molecules 
[252]. This is especially beneficial for administering 
bioactives in localised treatments for illnesses like cancer, 
inflammation, or infection. Lipid nanoparticles may be 
functionalised with ligands or antibodies on their surface 
that precisely recognise and bind to receptors on target 
cells. Lipid-based nano-carriers provide continuous 
and regulated release of natural chemicals, therefore 
extending their therapeutic efficacy and reducing adverse 
effects. Encapsulating these drugs in lipid-based carriers 
allows for regulated release over a prolonged duration. 
SLNs and NLCs are often formulated with a solid lipid 
matrix that gradually releases bioactive chemicals, 
ensuring a prolonged release profile. This method 
reduces the need for regular delivery, improves patient 
adherence, and sustains stable medication concentrations 
in the body. Lipid-based carriers may be engineered 
to release natural substances in response to particular 
stimuli, such as changes in pH or temperature, therefore 
improving the accuracy of medication delivery.

Advances in targeted delivery using lipid‑based 
nano‑carriers
Tissue-specific targeting, and Cellular uptake 
mechanisms are major strategies for targeted delivery in 
obesity therapy/ Nanotechnology stands as a promising 
strategy for obesity therapy through targeted tissue 
delivery to enhance both precision and outcomes and 
reduce adverse effects (Fig. 3). Lipid-based nanoparticles 
combined with polymeric nanoparticles receive equal 
consideration as adipose-specific ligands together 
with thermoresponsive nanoparticles beside lipophilic 
medicine delivery through microneedles for adipose 
tissue administration and nanocarrier-assisted gene 
delivery [34, 253]. The design of lipid-based nanoparticles 
allows scientists to create targeted delivery options 
for tissues that face obesity-related complications 
in adipose tissue and liver and muscle. The unique 
design of polymeric nanoparticles allows for delivering 
active substances that bind directly to tissue receptors. 
Medication delivery to adipose tissue becomes more 
targeted once nanoparticle platforms combine adipose-
specific ligands [253, 254].

The body temperature sensitivity of thermoresponsive 
nanoparticles enables precise drug delivery into adipose 
tissue. Film-coated drug delivery systems encapsulate 
hydrophobic pharmaceutical agents to increase their 
stability and enhance their absorption and tissue retention 
properties [255]. The engineering of microneedles 
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involves limiting penetration to the epidermis only 
allowing for targeted medication administration while 
enhancing both patient comfort and reducing procedure 
aggression [256]. Nanocarriers help neuro-direct delivery 
to specific brain locations responsible for controlling 
hunger together with metabolism [257]. Dual therapy 
delivered through nanotechnology-based encapsulation 
improves the delivery of weight-loss medicines and 
appetite-suppressant compounds simultaneously for 
heightened treatment outcomes [257]. Stimuli-sensitive 
nanoparticles automatically release their therapeutic 
content when activated by specific pH environments, 
enabling them to reach targeted body areas including 
stomach tissues and adipocytes [258].

Advances in intelligent nanoplatforms for adipose 
tissue remodelling manipulate nanomaterials to manage 
adipogenesis as they explore potential ways to address 
metabolic dysfunctions through specific modification 
of adipose tissue gene expression patterns [34, 259]. 
Nanotechnology-based tissue-specific delivery for 
obesity treatment shows great promise to boost both 
treatment efficiency and safety while providing patients 
with targeted and personalized therapy options.

Researchers have used receptor-mediated endocytosis 
(RME) as an emerging approach to optimize the exact 

targeting capacity of anti-obesity pharmaceuticals while 
enhancing their performance [260, 261]. According 
to these studies, RME enables drug molecules to 
selectively bind to specific cell surface receptors, 
triggering internalization into target cells and reducing 
off-target effects. Scientists have stated that this 
mechanism enhances drug bioavailability and ensures 
that therapeutic agents reach their intended site of action 
with greater specificity. Moreover, experts have noted 
that RME-based drug delivery can overcome biological 
barriers, minimize systemic toxicity, and improve the 
pharmacokinetic profile of anti-obesity agents [112, 
260]. Recent advancements have also demonstrated that 
functionalizing nanoparticles with ligand-based targeting 
strategies further refines drug delivery through RME 
[112, 262].

Cellular receptor mediated endocytosis (RME) serves 
as a mechanism to transport particular molecules into 
cells through surface receptor-mediated binding events. 
Selective cell surface receptor detection enables cellular 
regulation of substance entry including hormones and 
growth factors and nutrients and drugs [263]. Through 
receptor-mediated endocytosis therapeutic agents can be 
transported directly to their intended cells which results 
in lower side effects and stronger drug effects in obesity 

Fig. 3  Strategies for tissues targeted delivery Using Nanotechnolgy in obesity therapy. (Created in https://​BioRe​nder.​com). This Figure illustrates 
cutting-edge strategies that leverage nanotechnology to achieve tissue-specific drug delivery in obesity treatment. The figure demonstrates 
how lipid-based and polymeric nanoparticles can be engineered with adipose-specific ligands to ensure targeted delivery to adipose tissue, 
liver, or muscle. It also shows how thermos-responsive nanoparticles can be triggered by body temperature to release their therapeutic contents 
precisely within adipose tissue. Additionally, the use of microneedle systems is presented as a non-invasive method to deliver anti-obesity 
agents transdermally, enhancing drug retention and minimizing discomfort. Gene delivery applications using nanocarriers such as siRNA-loaded 
nanoparticles—are depicted for their ability to modulate obesity-related genes at the molecular level. Furthermore, the figure outlines dual-delivery 
platforms that co-administer appetite suppressants and anti-inflammatory agents for synergistic therapeutic effects. Finally, stimuli-responsive 
nanoparticles are highlighted for their ability to release drugs selectively in response to environmental changes such as pH, temperature, 
or enzymatic activity, offering precise and personalized therapeutic outcomes in obesity management

https://BioRender.com
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treatment. The RME process involves the following 
steps: A sequential process takes place including ligand 
binding followed by clathrin-coated vesicle formation 
leading to endosomal internalization and uncoating 
then trafficking before ligand action or degradation 
occurs [264]. Common cellular receptors involved in 
RME mechanisms related to obesity comprise insulin 
receptor (IR), leptin receptor (Ob-R), fatty acid receptors 
(FFARs), scavenger receptors (SRs) and CD36 (Fatty acid 
translocase) alongside adiponectin receptors (AdipoR1 
and AdipoR2) and endothelial receptors (e.g. VEGF 
receptors) [265].

Advantages of RME for obesity therapy include [266, 267]
RME structures enable pharmacological compounds to 
bind with specific receptors that permit desired drugs 
to reach their target tissues with minimal unintended 
consequences. Drugs can penetrate cell membranes 
more efficiently when using receptor-mediated processes 
which enhances both tool availability in the body as 
well as therapeutic results. Drugs that were previously 
eliminated before reaching their target site benefit from 
this delivery approach which ensures safe arrival.

Database-guided drug delivery through RME 
functions to protect target cells from dangerous systemic 
side effects. Drugs with harmful side effects benefit 
remarkably when they receive precise targeted treatment. 
By targeting specific receptors that participate in obesity-
related pathways the therapeutic agents maintain their 
ability to impact molecular mechanisms of obesity 
including fat accumulation and insulin resistance and 
inflammatory processes. New treatment enhancements 
become possible through this method of delivery. 
Medical scientists can use RME to penetrate biological 
barriers including the blood–brain barrier for drug 
distribution when treating central regulations of appetite 
and energy expenditure.

However, several challenges need to be addressed [268]: 
Researchers need to invest deeply into understanding 
receptor biology to develop drugs that will exclusively 
target overexpressed receptors yet preserve normal 
physiological activities. Internalized drugs require 
proper cellular routing to achieve therapeutic outcomes 
within their proper intracellular compartments. An 
improper drug routing system could result in damaged 
or unproductive drug effects. The effectiveness of 
receptor-targeted therapies becomes limited when 
cells reduce receptor expression levels or create 
resistance mechanisms during prolonged treatment. The 
optimization of delivery vehicles including nanoparticles 
and liposomes remains essential to achieve efficient 
therapeutic agent transport while minimizing adverse 
immune system effects.

Receptor-mediated endocytosis demonstrates excellent 
potential to become a key method for targeted drug 
delivery treatment of obesity. This approach enables 
increased therapeutic drug performance through its 
ability to target specific receptors found on chosen cells 
combined with enhanced bioavailability and efficacy 
and reduced systemic toxicity. The complete success of 
RME therapy for obesity treatment and related metabolic 
disorders requires overcoming three primary barriers 
including receptor selectivity and intracellular trafficking 
and resistance development.

Functional modifications of lipid‑based nano‑carriers 
for obesity management
Nanotechnology advances have led laboratories to 
develop lipid-based nanocarriers that improve drug 
delivery targets alongside increasing bioavailability and 
decreasing adverse effects. The modified nanocarriers 
achieve enhanced effectiveness for obesity treatments 
through functionalization methodologies. This section 
focuses on two key strategies for functionalizing lipid-
based nano-carriers: Scientific modifications that 
strengthen delivery system surface properties involve 
both ligand attachment protocols and responsive 
triggering protocols.

Surface functionalization with ligands
Surface functionalisation involves altering the surfaces 
of nanocarriers with particular ligands, like peptides, 
antibodies, or small molecules, to facilitate targeted 
distribution and enhance therapeutic efficacy. Surface 
functionalisation is especially advantageous in obesity 
therapy, since it improves the distribution of anti-obesity 
drugs to target organs such as adipose tissue, liver, or 
the hypothalamus. Ligand-based targeting enhances 
specificity, reduces off-target effects, and augments 
therapeutic effectiveness [269, 270].

Peptide ligands are extensively used owing to their 
diminutive size, biocompatibility, and capacity to 
selectively target certain cell receptors [271, 272]. 
Examples include RGD peptides that specifically target 
integrins in adipose tissue, and GLP-1 analogues that 
modulate appetite and energy expenditure. Monoclonal 
antibodies may be attached to lipid-based nanocarriers 
to identify particular antigens on target cells, including 
anti-CD36 antibodies, antibodies against obesity 
hormone receptors, and tiny chemicals such as folic acid 
or hyaluronic acid.

Two methods for ligand attachment include covalent 
conjugation, which guarantees stable ligand attachment 
and minimises the risk of premature detachment, and 
non-covalent binding, which adsorbs ligands onto the 
nanocarrier surface via hydrophobic or electrostatic 
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interactions [273]. Click Chemistry is an exceptionally 
efficient, bioorthogonal method used to conjugate ligands 
to lipid nanocarriers while preserving their functional 
characteristics [274].

Obesity management applications including the 
targeting of adipose tissue, hypothalamic intervention, 
and the promotion of thermogenesis. Surface 
functionalisation may augment the distribution of anti-
obesity drugs, diminish off-target effects, and promote 
medication effectiveness.

Use of stimuli‑responsive systems
Lipid-based nanocarriers that respond to stimuli are 
engineered to react to certain environmental triggers, 
such pH, temperature, enzymes, or redox potential, 
facilitating regulated and localised medication release. 
These mechanisms are essential in obesity therapy 
by delivering medications to variable settings such as 
inflammatory adipose tissue, acidic endosomes, or 
metabolically active brown adipose tissue [275, 276].

There are three categories of stimuli-responsive 
systems: pH-responsive systems that release 
pharmaceuticals at acidic pH levels, temperature-
responsive systems that release medications in reaction to 
temperature variations, and enzyme-responsive systems, 
together with redox-responsive systems [277, 278]. These 
systems may be engineered to provide anti-inflammatory 
drugs to inflamed adipose tissue, thermogenic agents to 
brown adipose tissue, lipase inhibitors to diminish fat 
absorption, and antioxidants to mitigate oxidative stress 
in obesity-related inflammation.

Functional lipids are often included into these 
systems, including pH-sensitive lipids that destabilise 
under acidic conditions and thermosensitive lipids that 
experience phase changes at designated temperatures. 
Multistimuli-responsive devices may be engineered 
to react to many stimuli, offering enhanced regulation 
of medication release. Surface coatings may augment 
stability and mitigate premature medication release 
[279]. Applications in obesity treatment include 
regulated appetite suppression, focused thermogenesis, 
inflammation reduction, and oxidative stress alleviation. 
pH-sensitive nanocarriers may transport appetite 
suppressants straight to the acidic areas of the brain, 
while temperature-responsive carriers can convey 
thermogenic drugs to brown adipose tissue. Redox-
responsive carriers may transport antioxidants to 
diminish reactive oxygen species (ROS) in adipose tissue.

Precision therapeutics in obesity management
Role of precision medicine in obesity treatment
Precision medicine represents a disruptive therapeutic 
strategy for obesity treatment which uses individual 

patient characteristics to craft personalized prevention 
approaches together with therapeutic strategies [280]. 
By categorizing obesity using distinct phenotypes this 
approach provides therapeutics that address individual 
characteristics of specific patient groups. Mathematical 
epidemiology studies four essential factors for obesity 
development: genetic vulnerability in combination with 
environmental conditions together with epigenetic 
transformations along with gastrointestinal microbial 
activity [281]. Precision medicine employs genomics 
proteomics metabolomics and microbiomics to 
establish individualized treatment methods. The 
precision approach leverages genomic discoveries 
alongside polygenic risk scores and genetic and 
environmental interaction data and pharmacogenomics 
and metabolicomics approaches for modifying the 
microbiome along with life choices together with 
wearable techoology and digital health systems [282, 
283].

The approach of precision medicine helps both medical 
drugs and alternative therapeutic procedures deliver 
better results during obesity care. Drug therapies and 
pharmacogenomics paired with dietary adjustments 
and surgical options and behavioral therapy make up 
pharmacological approaches [283]. Medical precision 
advances through technological development including 
artificial intelligence and machine learning alongside 
omics integration and telemedicine and biobanks and 
big data solutions. The implementation of precision 
medicine encounters several obstacles which include 
ethical difficulties and equity matters and restrictions in 
access along with data protection concerns together with 
obesity treatment complexity and delayed therapeutic 
results and the absence of standardized processes for 
adopting precision medicine in clinical settings. Future 
approaches in obesity management include both artificial 
intelligence systems and targeted treatment development 
and precision-based community prevention strategies 
[283].

Precision medicine represents a ground-breaking 
method of handling obesity care through its ability to 
handle patients’ diverse medical profiles. This new model 
takes advantage of genomic and metabolomic as well 
as microbiomic and digital health advances to deliver 
personalized effective interventions. Research combined 
with technological innovation creates promising 
opportunities for precision medicine integration into 
standard obesity treatment practices which should 
enhance patient success rates and lower obesity’s global 
impact.
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Integration of lipid‑based nano‑carriers in precision 
therapeutics
The use of lipid-based nano-carriers represents ground-
breaking technology for therapeutic obesity management 
through precision delivery [284]. The carriers enable 
precise targeted drug delivery while providing better 
systemic drug access and synergistic administration 
of multiple therapeutic components. The potential 
increases markedly when lipid-based nano-carriers 
team up with personalized medicine methods that 
analyze both genetic data and metabolic processes to 
create customized interventions [285]. Lipid-based 
nano-carriers form the foundation of tailored drug 
products that match obesity treatment approaches to a 
patient’s specific profile. The method delivers maximum 
therapeutic benefit by reducing undesired effects. The 
strategy delivers several critical benefits such as optimal 
drug delivery and increased bioavailability together with 
tissue-specific targeting and extended dose control with 
reduced unwanted drug interactions.

Precision and Therapy Efficacy in obesity treatment 
is enhanced through the combination of lipid-based 
nano-carriers and genetic and metabolic profiling 
approaches. Through siRNA or mRNA or CRISPR/Cas9 
nucleate acid therapies loaded onto lipid carrier’s genetic 
profiles enable precise targeting of obesity-associated 
genes [286]. Drug optimization by metabolic profiling 
uses released drugs that specifically act on metabolic 
pathways detected within individual patient profiles. 
Combination drug therapy achieves multifactorial targets 
when distinct therapeutic substances are administrated 
through co-delivery strategies reproducing synergistic 
actions. Lipid nanoparticles enable symbiotic drug 
delivery of GLP-1 analogs with anti-inflammatory agents 
to manage both appetite control and inflammatory 
processes. The delivery of AMPK activators together with 
leptin mimetics in nanostructured lipid carriers (NLCs) 
leads to simultaneous thermogenic effect and satiety 
regulation [287, 288].

The challenges of pharmacogenomics in drug response 
can be overcome through optimized therapeutic delivery 
strategies which minimize drug response variability. 
Lipid-based formulations enhance drug delivery to 
patients who have polymorphisms in their CYP450 
enzymes because these formulations avoid excess hepatic 
metabolic breakdown [289, 290].

Case studies and clinical applications
Liraglutide for obesit
Liraglutide demonstrates successful weight control as 
a GLP-1 receptor agonist. Pharmacokinetic properties 
of liraglutide improve significantly when doctors 
encapsulate it inside liposomes because the system 

combats degradation and extends its therapeutic window 
thus increasing weight management performance [291, 
292]. The use of liposomal formulations leads to a higher 
rate of patient adherence while lowering treatment 
side effects more effectively than established medicine 
products.

siRNA‑LNPs for lipid dysregulation
Clinical research demonstrated promise for lipid 
nanoparticles carrying ANGPTL3 siRNA which 
reduce plasma lipid levels through their regulatory 
role in metabolic pathways [293, 294]. The system 
demonstrates significant potential in dyslipidemia 
management for obese patients by blocking lipid 
regulatory pathways and restoring normal lipid 
distribution.

Omega‑3 nanoemulsions in inflammation control
Nanoemulsions containing omega-3 fatty acids show 
anti-inflammatory benefits for obese patients through 
their ability to modulate adipose tissue macrophages 
and decrease overall inflammation and enhance insulin 
sensitivity [295, 296]. The delivery system based on 
nanoemulsions enables optimized bioavailability along 
with superior therapeutic effectiveness.

Polymeric nanoparticles for leptin delivery
Major controller of hunger and metabolic actions during 
weight management becomes limited by leptin resistance 
experienced in obese individuals. Lab-made polymeric 
nanoparticles that slowly deliver leptin through the 
bloodstream now demonstrate capabilities for barrier 
evasion and boosted brain access while leading to better 
regulation of energy balance systems [296].

Exosome‑based delivery of therapeutics
Researchers investigate stem cell-derived exosomes to 
transport both anti-inflammatory cytokines and small 
molecules that help prevent inflammation caused by 
obesity [297, 298]. The natural nanocarriers have shown 
both targeted delivery and reduced immunogenic 
effects that demonstrate promise for future clinical 
implementations.

Gold nanoparticles for adipose tissue thermogenesis
Vital research shows gold nanoparticles could encourage 
thermogenic effects in adipose tissue by activating 
β-adrenergic receptors. Scientists created a new method 
that boosts calorie consumption while suppressing fat 
storage among obese patients [299, 300].
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Lipid‑based drug delivery for bariatric surgery support
Drug delivery systems based on lipids improve the 
absorption of nutrients and vitamins for patients 
who require bariatric surgery treatments [301]. The 
formulations help post-surgical patients who experience 
malabsorption problems by improving their nutritional 
health while aiding weight management for the long term 
[302].

Safety, toxicity, and regulatory considerations
Scientists have developed lipid-based nano-carriers for 
drug delivery because the obesity increase in recent years 
made traditional treatments insufficient. These delivery 
systems demonstrate dual advantages for optimizing 
drug treatment outcomes and reducing harmful side 
effects. Safety along with toxicity assessment and 
regulatory approval status constitutes essential elements 
for translating this technology into clinical practice.

Bioavailability becomes optimal and autoimmune 
reactions minimal through the application of lipid-based 
nano-carriers because these delivery systems exhibit 
three main safety attributes [303]: biocompatibility 
combined with biodegradability and targeted delivery 
capability. Safety issues stem from the size dependent 
toxicity together with surface modification challenges 
and variability in lipid materials [304]. The improvement 
of lipid-based nano-carriers safety relies on biochemical 
lipid optimization along with natural lipid selection and 
extensive preclinical research procedures. To obtain 
obesity management safety of lipid-based nano-carriers 
toxicological evaluations and risk assessments must 
be performed as fundamental steps. Key toxicological 
assessments consist of acute and chronic tests alongside 
genomictoxicity and carcinogenicity investigations and 
immunotoxicology investigation and pharmacokinetic/
biodistribution research combined with risk assessment 
approaches [304]. Hazard identification pairs with dose–
response assessment alongside exposure assessment and 
risk characterization to manage toxicological risks and 
builds advanced formulation techniques to optimize 
surface functionalization and develop safety biomarkers 
for early toxicity detection during clinical trials.

Safety evaluations along with tests for both quality and 
efficacy form the basis of regulatory standards which 
monitor lipid-based nano-carriers. The FDA together 
with EMA and WHO establish developmental and 
commercialization regulations for nano-pharmaceuticals 
through their established guidelines. The regulatory 
requirements for human medical care products include 
several components which encompass preclinical data 
based evaluations in addition to Good Manufacturing 
Practices (GMP) regulatory enforcement while also 
requiring clinical trial requirements and product 

characterization protocols alongside establishment 
of quality control measures. Standardized guidelines 
for lipid-based nano-carriers remain underdeveloped 
while regulatory requirements between countries differ 
and knowledge about both long-term biochemical 
transformations and bioaccumulation effects remains 
limited. Through the work of the International Council 
for Harmonisation of Technical Requirements for 
Pharmaceuticals for Human Use (ICH) and public–
private partnerships the development and regulatory 
approval of lipid-based nano-carriers proceeds faster.

Safety testing combined with toxicity analysis and 
regulatory requirements prove essential for making lipid-
based nano-carriers applicable in obesity therapy. Urgent 
toxicological evaluations and regulatory framework 
compliance remain essential because these systems 
demonstrate promising therapeutic potential. Further 
joint efforts between academia researchers and industry 
actors and regulatory organizations will have to develop 
safe clinical procedures for lipid-based nano-carriers to 
transform obesity treatment approaches.

Challenges and future directions
Challenges in developing lipid‑based nano‑carriers 
for obesity management
The encapsulation properties together with distribution 
efficiency of bioactive compounds makes lipid-based 
nanocarriers consisting of liposomes and solid lipid 
nanoparticles (SLNs) and nanostructured lipid carriers 
(NLCs) highly beneficial for obesity treatment. Lipid-
based nanocarriers present various formulation 
difficulties involving material options together with 
encapsulation effectiveness and stability challenges 
and targeted drug delivery capabilities and toxicity 
evaluations and limits obstacles in scale-up production.

The process of selecting materials presents complex 
challenges because it requires specific assessments 
of the stability and compatibility between medicinal 
compounds and appropriate lipids and surfactants while 
guaranteeing biocompatibility. The extensive challenges 
for encapsulation efficiency exist for both hydrophilic 
and hydrophobic molecules while finding appropriate 
equilibrium between payload stability and release 
kinetics proves difficult. Physical instability mechanisms 
such as lipid oxidation together with aggregation and 
precipitation diminish the usable lifetime of nano-
carriers. The technical difficulties of controlled release 
accompany the complex work necessary for targeting 
specific metabolic streams or adipose tissue cells through 
functionalisation approaches.

The development of industrial-scale manufacturing 
faces key limitations because of difficulties related to 
repeatable production procedures as well as complex 
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process equipment together with investment expenses 
and regulatory constraints along with challenges in 
stabilising methods scalability. Large-scale production 
faces multiple hurdles in sustaining uniform nano-carrier 
dimensions and dispersity metrics and drug loading 
precision levels despite rising expenses from specialized 
materials and equipment and monitoring procedures 
that increase commercialization barriers most strongly 
in low-resource settings. The ongoing development 
of regulatory frameworks for nano-pharmaceuticals 
continues alongside the need for extensive and costly 
research to demonstrate both safety and effectiveness 
and repeated clinical utility of lipid-based nano-carriers.

Future research directions
The design of innovative nano-carriers through hybrid 
lipid-polymer nano-carriers and stimuli-responsive 
systems achieves multiple improvements including 
stable payload delivery and controlled drug release with 
targeted drug delivery. The use of custom-made lipid 
blends in NLC systems improves both drug incorporation 
rates and their stability properties. Biodegradable and 
natural lipids derived from renewable natural lipids carry 
dual benefits of biocompatibility and reduced toxicity.

Antitobesity phytochemicals such as polyphenols, 
flavonoids, and alkaloids show improved distribution 
after encapsulation in lipid-based nanocarriers which 
increase accessibility while targeting specific areas. 
Nanocarriers enable improvement of stability and 
effectiveness by encapsulating marine-derived substances 
such as algae and sponges. The use of synergistic 
formulations creates a single nano-carrier system 
which combines several natural compounds to achieve 
enhanced therapeutic outcomes through synergistic 
interactions.

The field of nano-formulation design uses artificial 
intelligence and bioinformatics tools to drive 
optimization while conducting lipid-drug compatibility 
screenings through virtual models and performing 
predictive toxicity simulations alongside in silico 
release pattern assessments to enable custom nano-
developments. Obesity treatment could undergo a 
fundamental transformation through novel treatment 
approaches that give both safer results with enhanced 
effectiveness and precise therapeutic intervention 
capabilities. Lipid-based nano-carriers hold great 
promise for obesity treatment by handling current 
challenges and leveraging future developments.

Conclusion
Lipid-based nano-carriers hold immense promise 
in advancing anti-obesity therapy by addressing 
challenges such as poor bioavailability, instability, and 
lack of targeted delivery for natural compounds. The 
nano-delivery systems comprising liposomes solid 
lipid nanoparticles and nanostructured lipid carriers 
improve bioactive agent delivery through enhanced 
solubility and stability with targeted distribution for 
better therapeutic results. These delivery systems now 
enable precision therapeutic treatments that represent 
a game-changing avenue for individualized and efficient 
obesity management.

Precise delivery strategies represent a key 
development because obesity therapy requires 
individualized medical solutions. Through smart 
tissue-targeting mechanisms and stimulus-triggered 
activation lipid-based nano-carriers optimize drug 
delivery to their site of action while lowering side effects 
and toxicities throughout the body. The discovery 
of these solutions creates opportunities to develop 
precision therapeutic methods which integrate genetic 
and metabolic signatures alongside microbiomic data 
for customized intervention strategies.

Achieving the most potent clinical applications of 
lipid-based nano-carriers depends on researchers 
working jointly with clinicians and policymakers. 
Strategies for resolving scalability issues and addressing 
regulatory requirements and security matters in 
lipid-based nano-carriers require joint initiatives 
with innovative research methods. Interdisciplinary 
collaboration will speed up lipid-based nano-carrier 
transition from research laboratories to clinical settings 
thereby providing new hope to treat obesity alongside 
its health complications.
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